Những câu hỏi liên quan
ra ka
Xem chi tiết
Nguyễn Thị Bích Thuỳ
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 9 2021 lúc 21:58

\(\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)

\(\Leftrightarrow\dfrac{2}{a+2}-1+\dfrac{2}{b+2}-1+\dfrac{2}{c+2}-1\ge2-3\)

\(\Rightarrow1\ge\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}=\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\)

\(\Rightarrow1\ge\dfrac{\left(a+b+c\right)^2}{a^2+2a+b^2+2b+c^2+2c}\)

\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Rightarrow\) đpcm

Bình luận (0)
Nguyễn Thị Bích Thuỳ
18 tháng 9 2021 lúc 21:46

Phía trên thoả mãn \(\ge1\) chứ không phải 3/2 đâu ạ 

Bình luận (0)
Đỗ Hương Giang
Xem chi tiết
Phạm Trần Tuyết Ninh
Xem chi tiết
 Mashiro Shiina
15 tháng 12 2018 lúc 20:13

Áp dụng bđt Cauchy-Schwarz:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{\left(1+1\right)^2}{a+b}=\dfrac{4}{a+b}\)

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1\right)^2}{b+c}=\dfrac{4}{b+c}\)

\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{\left(1+1\right)^2}{c+a}=\dfrac{4}{c+a}\)

Cộng theo vế và rút gọn suy ra đpcm

\("="\Leftrightarrow a=b=c\)

Bình luận (0)
Thảo Vi
Xem chi tiết
Akai Haruma
8 tháng 3 2021 lúc 21:46

Bài 1:

Áp dụng BĐT AM-GM ta có:

$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$

$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$

Cộng theo vế và thu gọn:

$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$

Ta có đpcm.

Bình luận (0)
Akai Haruma
8 tháng 3 2021 lúc 21:49

Bài 2:

$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$

$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$

$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$

Cộng theo vế và rút gọn thu được:

$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$ 

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$

Bình luận (0)
Akai Haruma
8 tháng 3 2021 lúc 21:50

Bài 3:

Áp dụng BĐT Cauchy-Schwarz:

$\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq \frac{(a+b+c)^2}{b+c+c+a+a+b}=\frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2}$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

Bình luận (0)
Phạm Trần Tuyết Ninh
Xem chi tiết
Phùng Minh Quân
15 tháng 12 2018 lúc 20:38

\(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\) ( Svac-xơ, Cauchy các kiểu -,- ) 

\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}}{2}=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\) ( đpcm ) 

... 

Bình luận (0)
tth_new
3 tháng 1 2019 lúc 9:42

\(2VP=\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\)

\(\le\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2VT\)

Từ đây,ta có: \(2VT\ge2VP\Rightarrow VT\ge VP^{\left(đpcm\right)}\)

Bình luận (0)
Neet
Xem chi tiết
Unruly Kid
7 tháng 11 2017 lúc 20:31

https://hoc24.vn/hoi-dap/question/471323.html

Tham khảo của Akai đi bác =))

Bình luận (1)
Hồ Lê Thiên Đức
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 3 2022 lúc 22:35

Đặt vế trái BĐT cần chứng minh là P

Ta có:

\(P=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a^2}{\sqrt{2\left(b^2+c^2\right)}}+\dfrac{b^2}{\sqrt{2\left(a^2+c^2\right)}}+\dfrac{c^2}{\sqrt{2\left(a^2+b^2\right)}}\)

Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\Rightarrow x+y+z=\sqrt{2011}\)

Đồng thời: \(\left\{{}\begin{matrix}y^2+z^2-x^2=2a^2\\z^2+x^2-y^2=2b^2\\x^2+y^2-z^2=2c^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{y^2+z^2-x^2}{2}\\b^2=\dfrac{z^2+x^2-y^2}{2}\\c^2=\dfrac{x^2+y^2-z^2}{2}\end{matrix}\right.\)

\(\Rightarrow P\ge\dfrac{1}{2\sqrt{2}}\left(\dfrac{y^2+z^2-x^2}{x}+\dfrac{z^2+x^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}\right)\)

\(\Rightarrow P\ge\dfrac{1}{2\sqrt{2}}\left(\dfrac{y^2+z^2}{x}+\dfrac{z^2+x^2}{y}+\dfrac{x^2+y^2}{z}-\left(x+y+z\right)\right)\)

\(\Rightarrow P\ge\dfrac{1}{2\sqrt{2}}\left(\dfrac{\left(y+z\right)^2}{2x}+\dfrac{\left(z+x\right)^2}{2y}+\dfrac{\left(x+y\right)^2}{2z}-\left(x+y+z\right)\right)\)

\(\Rightarrow P\ge\dfrac{1}{2\sqrt{2}}\left(\dfrac{\left(y+z+z+x+x+y\right)^2}{2x+2y+2z}-\left(x+y+z\right)\right)=\dfrac{1}{2\sqrt{2}}\left(x+y+z\right)=\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\sqrt{\dfrac{2011}{2}}\)

Bình luận (0)
Big City Boy
Xem chi tiết